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Abstract

The fundamentals of a new radiation model are described in this paper. The spatial and angular dependence of the radiation intensity are
split in such a way that the radiation intensity is approximated by a linear combination of basis functions dependent only on the angular
direction. The coefficients of the approximation are functions of the spatial coordinates. The spatial discretization is performed using the
finite volume method and the angular discretization is based on the finite element method. This means that the basis functions are definec
according to the criteria used in the finite element method. The step scheme was employed in the spatial discretization and bilinear basis
functions were chosen for the angular discretization. The method may be applied to both grey and non-grey media, non-scattering and
scattering media, simple and complex geometries. However, it is still in an early stage of development, and therefore it is applied in this
paper to simple one-dimensional problems of radiative transfer in enclosures with grey, emitting-absorbing and scattering media. The results
obtained show that the method gives good results for several benchmark problems with available analytical solutions, and converges to the
exact solution as the grid is refined and the number of terms in the approximation increases.

0 2005 Elsevier SAS. All rights reserved.
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1. Introduction monics [3], YIX [4], discrete transfer [5], discrete ordinates
[6] and finite volume [7] methods. All these methods have
Radiative heat transfer plays an important role in many their merits and shortcomings, and no one is considered as
engineering problems because of the need to predict or meaihe best one for all applications.
sure heat transfer in furnaces, boilers, engines and rocket 1he zonal method was originally developed for rectan-
nozzles. It is also relevant to many industrial heating, cool- gular enclosures and non-scattering or isotropically scatter-
ing and drying processes, as well as to solar radiation. In ing media. Later developments have allowed the relaxing of
most problems of practical relevance, radiation propagatesthese restrictions. Nevertheless, the calculation of exchange
throughout a medium that absorbs, emits, and often scatterd@réas in geometrically complex enclosures is a challeng-
radiation. Several methods have been developed to computdd issue, and the computational requirements are high. The
radiative heat transfer in participating media. These include, Monte Carlo method can be used to address very complex

among others, the zonal [1], Monte Carlo [2], spherical har- Problems, §|ther in terms of geometry or radiative properties
of the medium and boundary surfaces. However, it is also
very time consuming, even for relatively simple problems,
P A preliminary version of this paper was presented at CHT-04: An and therefore other less computationally demanding meth-
ICHMT International Symposium on Advances in Computational Heat ods are often preferred The spherical harmonics method
Transfer, April 2004, G. de Vahl Davis and E. Leonardi (Eds.), CD-ROM h d th t" | f dati but it i |
Proceedings, ISBN 1-5670-174-2, Begell House, New York, 2004. as a sound mathematical toundation, but It1s only com-
* Fax: +351 21 8475545; phone: +351 21 8418194, petitive if a low order approximation Is employed. The P1

E-mail address: coelho@navier.ist.utl.pt (P.J. Coelho). approximation is very popular, but it is often inaccurate
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Nomenclature

Aq coefficient of a linearly anisotropic phase r positionvector ............. ..., n
function s unit vector along the direction of propagation of

E number of control angle elements; absolute error radiation

G incident radiation ... EEEREEEEREE w2 x coordinate along the direction normal to the

Iy blackbody radiation intensity .... \W2.sr™1 wall m

L distance betweenthewalls ................ m T e

n outer unit vector normal to the wall Ax Length of a controlvolume ............... n

N total number of angular nodes Greek symbols

N, number of angular nodes in a control angle 0 relative error
element L . o

N, number of spatial control volumes s d!rect!on cos!ne of the d'”?c“c’,”

Ny number of polar angles per octant Wk dlre_ct|on C(_)sme of théth direction

N, number of azimuthal angles per octant ¢ basis function

Jw incident heat flux onthewall ........ W2 ¥ shape function

for strongly anisotropic media, while the P3 approximation [10], but they are unable to significantly reduce ray effects.
is mathematically involved and does not significantly im- The modified discrete ordinates and finite volume methods
prove the results. The YIX is based on the solution of the [11-13] successfully mitigate ray effects caused by discon-
integral form of the radiative transfer equation along pre- tinuities or sharp gradients of the temperature of the bound-
scribed directions. It is an efficient solution method com- aries; but they are ineffective if ray effects are due to sharp
pared with other methods for the solution of the integral gradients of the temperature of the medium. A new modi-
form of the radiative transfer equation, and can be applied t0 4 version has been proposed in [14], which also mitigates

nonhomogeneous and hon-grey media. Howevfar, I Sl_JfferSray effects originated from sharp gradients of the temper-
from ray effects. The discrete transfer method is relatively : ; . ;
ature of the medium. However, this method is more time

accurate, flexible and economical from the computational . o o
. ' . . consuming, and becomes prohibitively expensive in the case
point of view. However, the calculation of the divergence of ) _ _
of anisotropic scattering.

the radiative heat flux, which constitutes the radiative heat .
In this paper, the fundamentals of a new method for the

source of the energy equation, may require a very fine an- ] il ¢ )
gular discretization to achieve accurate results. Moreover solution of the radiative transfer equation are described, and

the method is not applicable to anisotropic scattering me- the method is applied to one-dimensional problems in grey
dia. media. The method relies on a finite element approximation
The discrete ordinates and the finite volume method haveto the angular dependence of the radiation intensity. There-
received significant attention and development in the last fore, the discrete angular discretization employed in the dis-
decade due to their good compromise between accuracygcrete ordinates and finite volume methods is avoided, and it
computational economy and flexibility. Moreover, they are is expected that this may alleviate ray effects, although this
easily coupled with computational fluid dynamics codes. issue is not addressed in the present work. The spatial dis-
However, these methods also have their limitations. The two cretization is carried out using a finite volume method. The
most important ones are ray effects and false scattering [8]. method will be referred to as HYDRA, which stands for HY-
Ray effects are a consequence of the angular discretizationyig finite volume/finite element Discretization method for
and result from the representation of the continuously vary- y,o o|ytion of the RAdiative transfer equation, or in short,

ing angular distribution of the radiation intensity by a dis- HYbrid Discretization for RAdiation. A finite element for-
crete set of solid angles spanning the whole space, such that

o N I mulation of the discrete ordinates method was used in [15].
the radiation intensity is assumed to be constant within each . . :
: o : |—|owever, the method developed in [15] is completely differ-
solid angle. False scattering is a consequence of the spatial

discretization and results from the diffusive nature of many ent from that propo_sed here. I.n th{_ﬂ Wor_k, the finite element
spatial discretization schemes method was used in the spatial discretization to enable the
Significant efforts have been directed to reduce the im- Solution of complex geometry problems. Here, the spatial

pact of the errors mentioned above. False scattering may padiscretization is carried out using the finite volume method,

significantly reduced using bounded high order resolution and the finite element approximation is used for the angu-
schemes formerly developed for computational fluid dynam- lar discretization. The finite element method has also been
ics [9]. As far as ray effects are concerned, more accurateused to solve radiation problems [16] but using the integral

guadratures and angular discretizations have been proposetbrmulation of the radiative transfer equation.
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2. Radiation model +/<Ib(r)/¢n(8) ds

The radiative heat transfer equation for a grey medium
may be written as

Zl (r)//¢z(§)¢(§ $) A2 ¢, (9) ds2
S-VI(r,s)=—BI(r,s) +«lp(r) A 4x
+Z—“f1(r,s’)q>(§,s)dsz/ @ n=12...N ®6)
4 Sincen may change from 1 tv, a set of N simultaneous

Although the present method can be applied to non-grey equations was derived, which allows the calculation of the
media, only grey media are considered in this work, and IV Unknowns, namely the function®"(r). Eq. (6) may be

therefore the wavelength dependence of the radiation inten-Writteén in a more compact form as
sity and radiative properties is omitted. In one-dimensional

media, this equation takes the following form Z u(s 31" (r) o
ol — ln®] dx
(r S -
() =—BI(r,9) +xlp(r)
= " By I Cy+— I Dy,
+%/,(r7§)¢(§’s)dg, @ ﬂmzl (1) Bun + k1 (0)Cy + Z (1)Dy
n=12,...,N @)

The boundary condition for a diffuse surface is given by MatricesA B. D and vectoC have been introduced for

I(ry.S) =ely(fy) + P / I(ty.S)|n-<|de’ ?) concise_ness. Their components may be easily obtained from
comparison of Egs. (6) and (7) yielding

n-s' <0
The radiation intensity is approximated by splitting the A,,, = /|M(s)|¢m(s)¢n(s) dse2 8
spatial and angular dependence as follows
N
I(r,9)= Z 1" (N)$m (S) 4) Byp = / S (dn () A2 9
m=1

Here, ¢,,(s) are linearly independent functions that consti-

tute the basis of a space of rank In the present method, Cn =/¢n(S) ds2 (10)
these functions are prescribed according to the finite element .

method, as described below. They are a function ofttiie
rection, and therefore a function of the polar and azimuthal p,,, = f/¢m(s’)q§(s', 9)d2' ¢, (9) d2 (11)
angles.™ (r) are unknown functions that depend only on the

spatial coordinates from which the radiation intensity field

1(r,s) may be defined. Inserting Eqg. (4) into Eq. (2) yields If the medium scatters isotropically, then the scattering phase
function is equal to 1 and matr is evaluated as

qIm (r)
MS)( pRAC ) Dyn = / f P (S) A2/ pu (9) dS2

A A

m=1
N 4 4m
— B X_jll’”(r)qu(s) + iy (1) =/¢n(s) d9/¢m(g> 42’
o N
+ao 2 1M / $(S)P (S, 9 d2’ (5) =CnCo (12)
T
=1 In the case of a linearly anisotropic medium, the phase
Now, both terms of this equation are multiplied by thté function is given by
basis function and integrated over all directions: 3
B9 =1+A15§=1+A1 ) (13)

/u(s)(Z%(s)a 4 )>¢n(s>dfz k=1
- m=1 where A1 is a constant. The subscriptwas omitted for-
merly because we are dealing with one-dimensional me-
=—8 Z I’”(r)/q&m(s)qbn () ds$2 dia, but must be retained here. Therefqres 1. Inserting
1 Eqg. (13) into Eqg. (11) yields
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K . .
be employed. Moreover, they can be employed to discretize
— ! /!
Dy = //¢m(sl)<1+ AlZ“k“k) ds2 gu(s) ds2 Eq. (7). However, in the present work we are focused on
dr 4 k=1 the development of a new solution method for the radiative

=/¢ (s) d9/¢ (s)de’ transfer equation, and therefore we wish to avoid any com-
" " plexities arising from the spatial discretization. Accordingly,
4 an we will simply use the step scheme, although realizing that

3 more accurate schemes should be preferred, and could be
+Ar Z( [ w942 [ wions) dﬂ’) employed.
k=1 "4 drr The right side of Eq. (7) is assumed to be constant within
3 a control volume. Therefore, integrating Eq. (7) over a con-
=C,C,+ A1 Z EnkEnk (14) trol volume of lengthAx and applying the step scheme gives

k=1
N
where Z( out — Ii’r?)Amn
Epj = / [kpm (9) A2 (15) =

N N
an — —BAXY 1P By +kAx Dy pC+ = Ax I} Din
Complicated phase functions are often approximated by m=1 4 =1
simpler ones, such as the delta-Eddington phase function ,—-12 ... N (18)
[17], where the forward scattering peak typically observed o o
for large particles is separated from the rest of the scatteringWhere Ziy and /g, are themth coefficient of the radiation

phase function: intensity entering and leaving the control volume. Since the
step scheme yieldg};; = 7, Eq. (18) may be rearranged as

5(s,8)=2f8[1—s-S]+ (1— f)[1+3gs-S] (16)
N
where f is the forward scattering factor argdthe asymme- Z(A 4 BAXBu) I
try factor. " e
In this case, the in-scattering term takes the following v v

form = 3 B A+ ATy pCy + Z—;Ax > 1 Din

&/I(LS’)@(S/,S)dQ’ m=1 =1

ax n=12...,N (19)

A
1 This completes the discretization task, and the solution of the

=os fI,9 + set of N, x N equations (19), wherd, stands for the num-

ber of spatial control volumes, gives the numerical solution
a7 . . .
of the radiative transfer equation. However, neither the ba-

The first term on the right of Eq. (17) is added to the out- sis functions were defined nor the solution method has been
scattering term, while the second term is handled as ex-outlined. These issues are addressed below.
plained above for a linearly anisotropic scattering phase The basis functions are defined according to finite ele-
function. ment criteria. This means that thé values appearing in

Eg. (7) has been discretized in the angular domain, but Eq. (4), which are defined over a spherical surface, may be
the spatial discretization has not yet been carried out. Dif- interpreted as nodes that define a grid. These nodes will be
ferent methods may be used for this purpose, but here wereferred to as angular nodes, and the elements by control
will use the finite volume method, which is particularly con- angle elements. Here, bilinear elements are chosen, and the
venient in the case of coupled CFD/heat transfer problemsgrid is defined in such a way that either the polar or the az-
for compatibility reasons, since the finite volume method is imuthal angle remains constant along the boundaries of the
widely used in CFD. Spatial discretization requires the ap- elements, as shown in Fig. 1. This means that a classical po-
proximation of the first derivative on the left side of Eq. (7) lar/azimuthal discretization is carried out, like in the finite
in terms of the radiation intensity at the grid nodes. The term volume and discrete transfer methods. However, while in
to be discretized is similar to the convective term in the mo- these methods the radiation intensity is constant over a con-
mentum equations. It is well known from CFD that the dis- trol angle or a solid angle, respectively, in the present method
cretization of the convective term is a challenging task, and the radiation intensity is a continuously varying function, be-
many discretization methods have been proposed. In the ra-cause the basis functions vary continuously within the con-
diation community, the step scheme is often employed. This trol angle elements.
scheme is the counterpart of the upwind scheme in CFD, Themth basis function is equal to 1 at nodeand equal
which is widely recognized to be unsatisfactory due to false to zero at all the other nodes. This function is identically
diffusion. More accurate schemes are available and shouldequal to zero for all but the elements that are connected to

_fcrs/](r,s’)[l+3gs-§]d9’
4
4
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wherea?,,. b, c. andds,, are the components of local ele-
ment matrices (vector, in the casecf)y of rank 4 for bilinear
shape functions defined over the domain of a control angle
element. Therefore, the components of global maticeB,

D, E and global vecto€ are not calculated directly over the
whole angular domain using Egs. (8)—(11) and Eg. (15). In-
stead, they are calculated element by element, like the stiff-
ness and load matrices in the finite element method, using
the shape functions defined above.

The components of the local element matrices are defined

Angular
nodes

Control angle
element

as
y al = [ ||y vy (9 ds2, (26)
X
2
Fig. 1. Control angle elements. . . .
bt = / Y (Y, (9) dS2e (27)
nodem. The restriction of a basis function to a control an- 2.
gle element is referred to as shape function, as in the finite .
element terminology, and is denoted #y €, = / ¥, () ds2, (28)
Let £2, be a control angle element such tha& 6 < 6;41 Qe
andg; < ¢ < ¢;41. There are only 4 basis functions that
are different from zero in this element, which are the basis ¢, = / / U (S)P (S, 9) A2, ¢, (5) A2, (29)
functions that take the value 1 at one of the nodes of the 2. 2
element and the value 0 at the three other nodes. The 4 shape
functions of this element are defined as e; .= / i () ds2, (30)
0-6 ¢—9 '
Y10, 9) = ——— (20) 2
1T Qi1 T @) The components of these matrices are calculated analytically
V(0. 0) = 0—0i+1 ¢ —¢j 21) for every control angle element. The only exception is matrix
2. 9= O —0iy10j+1— @) d¢, whose components may require numerical integration,
0 —011 ¢ — @it depending on the scattering phase function. In the case of
V30, 9) = o 91 —L (22) isotropic or linear anisotropic scattering, analytical integra-
ARG A CAR tion is possible, yielding
0—0 ¢9—9jin .
€6, ) = 23 d° =ctct 31
Vi) =g (23)  df,=cic (31)

The radiation intensity over an element may be expressed asfor isotropic scattering and

a linear combination of the shape functions of that element 3
as dé =cp .+ Ax Z el e (32)
N, k=1
I¢(r,s) = Z I"(N)ye (9 (24) for linear anisotropic scattering. In the case of a delta—
m=1 Eddington phase-function, analytical integration is also pos-
where the superscriph, e denotes thenth angular node of sible, since the last term on the right side of Eq. (17) is
the eth control angle element, and, is the number of an- identical to the in-scattering term of a linearly anisotropic
gular nodes in a control angle element, which is equal to 4 Scattering phase function, apart from the factr- f).
in the case of bilinear elements. The relation betweerthe The components of the local element matrices/veator

angular nodes of thertangular domain and th#, angular ~ P°, ¢, d° ande” (rankN,), are transferred to global element
nodes of every control angle element is stored in a mapping Matrices/vectoA, B¢, C*, D* andE® (rank N). The com-

matrix. Eq. (19) may be written for elemef?, as ponents of the global element matrices are easily obtained
from the components of the local element matrices using the

Ne mapping matrix. The global element matrices are assembled
Z(ae + BAxbS,, )¢ ; L ; :
mn mn) " P as in the finite element method to obtain the global matrices.
m=1 Hence, the components of the global matrices are calculated
as follows

N, Ne
[of
= Z I al,, + kAxIp pct + ﬁAx Z[é*edﬁ]
m=1
n=12..

E
=1 e
A = E A 33
2 .y Ne (25) mn = mn ( )
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E N
B, =) B (34) = Y I"(w) / |1 (S) ds2
e=1 m=1 o
(51.n<0)
E
N
_ e
Ci=2_C; (35) = Y I"CwWEnal (40)
e=1 m=1
E (51°-n<0)
D, =Y D (36)  and calculated as
e=1 E Ne
£ =2 2, I"Cwle (41)
_ e o= =
Emﬁk - 21 Em.k (37) e=t (s,r,rfnglO)
-

Many different solution methods may be employed to Although the method has been described for one-dimen-
sional grey media, the extension to non-grey media and

solve the set ofV, x N equations (19). A simple solution to multidimensional enclosures d not present anv m
method was employed in this work, which combines an iter- to-mu ensional enclosures does not present any ma-

ative solver with a direct solver. It is likely that other solvers jor problems. In particular, the development and applica-

will produce faster convergence, but this requires further in- tion to two anq three-dlmensmngI enclosures is reported in
vestigation. [19]. The application to geometrically complex enclosures

In the present method, the equations for all the directions Irs talso fet?‘i"gile’ra?i;’v?i” ‘;’:S thhe LTplerPen;?:loln gf Imorlericcr:;:—
become coupled together, in contrast with the discrete ordi- ate spatial discretization Scnemes or controlangie elements.

nates and the finite volume methods. However, the matrix ;I]owevsr, tth"c; ;etqurlrers addr't'r? n_?_lhwc;rk tnat(;mll (r:i(l):un?mtteh
of coefficients is sparse, as a consequence of the use of fi- € subject ol Tuture research. The resufts describe €

nite element criteria to select the basis functions, allowing following section were obtained using an Alpha processor

fast solvers to be employed. In this work, tNe spatial grid at 600 MHz. The convergence criterion demands that the

nodes are treated sequentially, using the Gauss—Seidel iterg'ﬁnetrren dc,}etR/et\;\I/efn ;V\t/k? sgccizsnr/e 'tﬁéiﬂori'i ?Lb?f; tg? ',:C;l
ative procedure. The set &f equations for the grid node entradiative fiux on the boundary a € incident radiatio

under consideration (Egs. (19)) is solved using a Subrou_summed over all the spatial control volumes decreases below

8
tine from LINPACK [18] suitable for sparse linear sets of 1075
equations, assuming that the radiation intensity at the spatial
neighbours of the grid node under consideration, .,

are known. Therefore, one iteration consists of the solution
of N, sets of N simultaneous equations. The iterative pro- ) ) ) )
cedure continues until the difference between the incident ~ Calculations were carried out for three one-dimensional

radiation on the walls in two successive iterations decreases @diative transfer problems in Cartesian coordinates. The re-
below a prescribed tolerance sults are expressed in terms of the radiative flux and diver-

Two quantities of major relevance in radiative transfer 9€Nce of the radiative heat flux. The radiative heat flux for a
problems are the incident radiation and the heat flux. The Plane parallel medium is given by [20]:

3. Resultsand discussion

incident radiation is calculated as
q(r):/[(r,@)cose ds2 (42)
N
G:/I(r,s)d.(z = Zlm(r)/zpm(s)d[z ar
e me1 i Here,0 stands for the angle between the normal to the wall
v and the direction of propagation of radiation ane- Sx is
_ Z "r)C (38) the optical thickness of the medium (see Fig. 2). This ex-
— " pression yields the net heat flux (defined as the difference

between the incoming and the outgoing heat flux) at the wall
The calculation is performed by assembling the results from |ocated atc = L if * = t; = AL, and the symmetric of the

all control angle elements as net heat flux at the wall located at= 0 if r = 0. If the inte-
E N, gration is carried out only for the hemisphere containing the
G = Z Z I™e(r)e, (39) directions pointing towards the wall, then the incident heat
i flux is obtained rather than the net heat flux. The divergence

of the radiative heat flux, which constitutes the radiative heat

The incident heat flux on the wall is given by source of the energy conservation equation, is given by

qu = / |l 1 (rw, 9 ds2 da (o) _ (1—w)(@rl, — G) (43)
5 dr



P.J. Coelho/ International Journal of Thermal Sciences 44 (2005) 809-821 815

Emitting-absorbing medium with prescribed temperature. ent optical thicknesses (= 0.1, 7; = 1.0 andr; = 10.0).

A plane medium that emits and absorbs but does not scat-Only one half of the domain is shown for symmetry rea-
ter is taken as the first test problem. The temperature of thesons. In all cases, the absolute value of the radiative heat
medium is 1500 K and the optical thickness has been variedsource decreases from the walls towards the symmetry plane

from r; = 0.1 to r; = 10.0. The temperature of the walls
is maintained at 500 K and their emissivity is 0.5. They are
treated as diffuse surfaces.

The analytical solution of this problem is given in [20].
Egs. (42) and (43) take the following form

*(r) = q(7) _ 2[E3(r) — E3(r — )]
T T STE—TAY T 1+ (/e — (1 - 2E3(wy))
(44)
dg*(r) _ dg(r)/dr  2[Ez(r)+ Ea(tp — 7))
dt  o(Tg—Tghe 1+ 1/e—1(1—2E3(1p))

(45)

whereE, (x) is the exponential integral function of order
defined as
o

En(x):/
1

Fig. 3 shows the normalized radiative heat source given
by Eq. (44) along the distance between the walls for differ-

dr

6‘7)“ -
tn

(46)

at x/L = 0.5. The radiative heat source is dictated by the
contribution of the emission from the medium, which is con-
stant in the case of an isothermal medium, and the incident
radiation, as given by Eq. (43). The incident radiation at a
given location is due to the radiation intensity that arrives at
that location from all the directions, as given by Eq. (38).
Let us imagine a case such that the distance between the
walls is very large, and consider a point equidistant from the
walls. The contribution of the walls to the radiation intensity
at that point will be negligible, since the walls are too far
away. Only the radiation from the medium will contribute to
the incident radiation at that point. The same reasoning may
be applied to points in the vicinity of the symmetry plane
and far from the walls. This means that the incident radia-
tion will be constant close to the symmetry plane as long as
the influence of the walls is negligible.

At points closer to the wall, the influence of the wall will
be visible. In the problem under consideration, the tempera-
ture of the wall is lower than the temperature of the medium.
Therefore, the radiation intensity leaving the wall is lower
than the blackbody radiation intensity at the temperature of
the medium. This implies that the incident radiation at a
point close to the wall is lower than that at a point far from
the wall, and it will decrease as the distance to the wall de-
creases. Conversely, the absolute value of the radiative heat
source increases if the distance from the wall decreases. This
behaviour is confirmed by the results displayed in Fig. 3.

In the case of an optically thin medium, the incident radi-
ation is strongly influenced by the radiation intensity leaving
the walls, I,,. Moreover,I,, is much lower than/, in the
present problem, and thereforg/diz will be approximately
constant and large. If, as a rough approximatiénis ne-
glected, then Eq. (43) yields

dg*(r)  dg(r)/de s 105
Fig. 2. Radiative transfer in a plane medium between two parallel walls. dr U(Tu‘,l — Téas) (Tu‘)l — Télas) .
2.5 -0.5 b) 0.0 1 )
1 a) {ic
XXX XXX
2.7 xxxxxxMMM 0.7 1 0.2 1
] §666338°°°°°° ] ]
2.9 /g"ﬁ’/___ -0.9 0.4
3 Joa®
S an X 2x2 -1.1 -0.6 - ——
| A 4x4 | ) A 4x4
3.3 o 6x6 -1.3 - -0.8 1 o 6x6
] ——exact I T — exact
_35 T T T T -15 T T T T -10 T T T T
00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05

x/L

x/L x/L

Fig. 3. Normalized radiative heat source (divergence of the radiative heat flux) as a function of the distance between the walls for severategtzataodss

The exact solution is reported in [20]. (g) = 0.1; (b) t;, = 1.0; (¢) t;, = 10.0.
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Table 1
Root mean square of the radiative heat source normalized by the difference between the emissive power of the medium and the emissive power of the walls
Predictions obtained using the discrete ordinates method (DOM) are also given

Optical Method Angular discretizationVg x N, per octant)

thickness %2 3x3 4x 4 5x5 6x 6
0.1 DOM rms 00168 00111 00080 00060 Q0045
HYDRA rms 00246 00182 00131 00098 Q0075
rms/mean 089 00065 00046 00035 00027

CPU time (s) %7 7.66 1925 3505 6046
1.0 DOM rms Q0017 00012 00009 00007 00008
HYDRA rms 00070 00030 00015 00009 00007
rms/mean ®081 00034 00018 Q0011 00008

CPU time (s) 076 222 556 1161 2303
10.0 DOM rms 00023 00027 00029 Q0030 00031
HYDRA rms 00003 00015 00021 00024 00026
rms/mean ®M034 00146 00207 00240 00260

CPU time (s) 018 054 145 318 6.30

This is consistent with the analytical solution given by (rms) defined as
Eq. (45) for a transparent medium, which yields

q*
* d d rmS( >
dg*(z) _ dg(r)/de ~ _4E(0) = —4.00 dr
dt  o(TE— T . .
1 ~[ / dg* dg*
If the medium emits and absorbs with = 0.1, then ¢ /d =— [( ) - ( ) ] (47)
u I with @/ ‘ Ny i=1 dr predicted de analytica

is no longer constant, but it remains approximately constant,
as shown in Fig. 3(a). The absolute value is greater as theand by the root mean square normalized by the mean value:
distance from the walls decreases, as discussed above.

On the contrary, in the case of an optically thick medium, rmg(9L) \/Zf\gl[(%)predicted— (%) analytical

2

e.g., 7. = 100, the radiation emitted at a given point is i N A (48)
rapidly absorbed. This means that the radiation intensity  “dr 221 (G predicted
leaving the walls will have a marginal influence on the inci- Table 1 also shows the errors obtained using the discrete

dent radiation, except in the close vicinity of the walls. Apart ordinates method using the same spatial and angular dis-
from this vicinity, the incident radiation will be approxi- cretizations, along with the computational requirements. It
mately equal to #1,, becausd (z, 6) ~ I,. This meansthat  can be seen that the discrete ordinates method yields smaller
dg /dr will be close to zero, as given by Eq. (43), and demon- errors for an optically thin medium, but larger errors for an
strated by the results plotted in Fig. 3(c). Physically, this optically thick medium. The reported CPU time should be
means that the radiation emitted by the medium at a given regarded as indicative since no effort was made to speed up
location is absorbed in its close vicinity, and therefore the the solution procedure using faster solvers that exploit the
radiative source is very small. This is no longer true when sparseness of the matrix of coefficients.
the distance from the walls is small, and this causes a sharp The rms of ¢*/dr, either normalized or not by the mean
gradient of the radiative source close to the walls and a rela-value, decreases with the increase of the number of control
tively large heat flux to the walls. angle elements for botly, = 0.1 andr; = 1.0, as expected.

If the medium is neither optically thin nor optically thick, However, a different behaviour is observed fgr= 10.0.
then the radiative heat source lies between those in the limit-In this case, the errors increase when a finer angular dis-
ing cases of optically thin and optically thick media. Hence, cretization is employed. The reason for this may related to
there is a stronger variation of the radiative heat source alongthe interaction between the errors arising from the spatial
the domain compared with the optically thin case, but a and the angular discretization. This interaction occurs in the
smaller gradient close to the wall compared with the opti- discrete ordinates and finite volume methods, as discussed
cally thick case. in [14,21]. Briefly, the two error sources tend to compen-

The predicted normalized radiative heat source is shown sate each other. This means that accurate solutions may be
in Fig. 3 along with the analytical solution as a function obtained even if the two errors are large provided that they
of the distance between the walls for different angular dis- are of the same magnitude, because their influence is oppo-
cretizations and optical thicknesses. The results were com-site. If one of the error sources is eliminated, the accuracy of
puted using a uniform grid wittV, = 40 control volumes.  the numerical solution may decrease, because the other error
The errors are quantified in Table 1 by the root mean squaresource remains, and is no longer compensated.
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Fig. 4. Root mean square of the radiative heat source as a function of the angular and spatial discretizatioasl.@)(b) t;, = 10.0.

ber of control angle elements, the error decreases with grid

refinement.
. . X2x2 0O
However, a different pattern is observed fgr = 10.0. 6 3 i 3 o gig

The angular refinement may vyield larger errors for a given A4x4
grid, if this grid is not fine enough. However, if the grid is 1.E-04 : : ; : :
fine enough, i.e., if the spatial discretization errors are small 1.0 1.1 1.2 1.3
enough, then the angular refinement actually yields smaller
errors, i.e., the angular discretization error decreases and the
SOIUtIO_ﬂ accuracy Increases. _Slm"arly' the g”d re_fmeme_nt Fig. 5. Root mean square of the radiative heat source as a function of
may yield larger errors for a given angular discretization if the expansion factor of the grid for several angular discretizations and for
this discretization is not fine enough. However, for a fine r; =100.
enough angular discretization, i.e., for negligible angular
discretization errors, grid refinement yields smaller errors,  15pje 2 shows the net heat flux on the walls normalized
I.e., the spatial discretization error decreases and the soluyy the difference between the emissive power of the medium
tion accuracy increases. and the emissive power of the walls. The analytical solu-
The reduction of the spatial discretization error may be tjon js given by Eq. (44). The absolutg, and the relative,
accomplished either by grid refinement or by a better dis- ;, errors are listed as a function of the angular refinement
tribution of the grid nodes. In the case of an optically thick anq optical thickness of the medium. A uniform grid with
medium, it has been observed that the radiative heat sourcey  — 40 control volumes was used. It can be seen that the
exhibits a strong gradient in the vicinity of the walls, but re- - exact solution is approached as the number of control angle
mains approximately constant in a wide area far from the elements increases, regardless of the optical thickness of the
walls. Therefore, if a non-uniform grid is employed with  medium. The solution accuracy increases with the increase
the grid nodes concentrated near the wall, the solution ac-of the optical thickness of the medium.
curacy is expected to improve. This is illustrated in Fig. 5 Finally, the influence of the emissivity of the wall is inves-
for 7, = 10.0. Several grids with a total oV, =40 grid  tigated. The predictions were made for the same spatial grid,
nodes were used and distributed by means of an expansiont x 4 control angle elements per octant and= 1.0. If the
factor that increases the size of the control volumes from the emissivity of the wall increases,, is more influenced by the
walls towards the symmetry plane. As this factor becomes temperature of the wall, and decreases becdyse Tgyas
larger, more concentrated are the grids nodes close to theTherefore, the incident radiation decreases too, yielding an
walls. The results show that for the largest expansion factors,increase of the absolute value of the radiative heat source.
i.e., when the spatial discretization errors are small enough, The proposed method reproduces this behaviour and the pre-
the increase of the angular refinement yields a decrease officted solution closely follows the analytical one, as shown
the solution error. in Fig. 6.

In order to further investigate this issue, the rms of 1.B-02

dg*/dr as a function of the grid size and angular refine-
ment is shown in Fig. 4 for both; = 1.0 andt;, = 10.0.

No anomalous behaviour occurs for = 1.0. In this case,
the increase of the number of control angle elements yields
smaller errors for a given grid. Similarly, for a given num-

Sl A 1) 1Nl

1.E-03

rms (dqg*/dr)

L1 iy

1

Expansion Factor
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Table 3

Root mean square of the radiative heat source normalized by the difference
between the emissive power of the medium and the emissive power of the
walls as a function of the emissivity of the walls

[ Emissivity of the walls
;S 0.1 0.3 0.5 0.7 0.9 1.0
g rms Q0003 Q0009 Q0015 Q0022 Q0029 Q0026

rms/mean  ®M017 00017 Q0018 Q0019 Q0020 00017

Table 4
Net heat flux on the walls normalized by the difference between the emis-
sive power of the medium and the emissive power of the walls as a function

00 01 02 03 04 05 of the emissivity of the walls
x/L Emissivity of the walls
0.1 0.3 0.5 0.7 0.9 1.0

Predicted heat flux .0972 02757 04361 05808 07121 07733
Exact heat flux M973 02767 04384 05849 07183 07806
E 0.0001 00010 00023 Q0041 Q0062 00073
n 0.0012 Q0036 00052 00070 Q0086 00094

Fig. 6. Normalized radiative heat source as a function of the emissivity of
the wall (solid lines: analytical solution; symbols: predictions).

Table 2

Net heat flux on the walls normalized by the difference between the emis-
sive power of the medium and the emissive power of the walls as a function
of the angular refinement and optical thickness of the medium

originally solved by Heaslet and Warming [22], and is ad-
dressed in detail in [20].

Optical Angular discretizatio x N, per octant) Exact . . .
P g Mo x Ny P ) ) A non-dimensional temperature field(r), and a non-
thickness 22 3x3 4x4 5x5 6x6 solution . . .. .
dimensional radiative heat fluy;, may be defined as
0.1 Heatflux 01384 01398 01409 01416 01421 Q1434
4 4
E 0.0050 00036 00025 Q0018 00013 T%t) =Ty, (1) + (L/e2 — D)y
n 0.0349 00251 Q0174 Q0126 Q0091 ¢(t) = 7 7= (49)
T;,—T,, 1+vp/e1+1/e2-2)
1.0 Heat flux 04274 04342 04361 04367 04369 04384 ’ ’
E 0.0110 Q0042 00023 Q0017 Q0015
n 0.0251 00096 Q0052 Q0039 00034 v = 49 _ ¥p (50)
4 _ 74 _
10.0 Heatflux 04895 04963 04983 04990 04994 Q5000 o(Ty1—T, ) 1+ yp(l/e1+1/e2—2)
E 0.0105 00037 00017 00010 Q0006 where the indices 1 and 2 refer to the walls. Notice that
n 0.0210 00074 Q0034 Q0020 00012

the radiative heat flux does not vary across the medium for
this problem. In the case of black walls(t) = ¢, () and
¥ = Y. These quantities are obtained from the numerical

Further insight into the solution accuracy is provided by solution of the following integral equations:

the rms of ¢*/dr, which is given in Table 3. It shows that
the rms is smaller for highly reflecting boundary surfaces. 1 L
However, this is mainly due to the smaller values of the ra- ¢, () = > [Ez(r) +[¢b(f’)E1(|r — f/|) df’} (51)
diative heat source. In fact, the rms normalized by the mean b
value of ¢;* /dr is approximately constant, i.e., the solution .
accuracy is approximately independent of the emissivity of , o
the walls. vp=1— 2/ ¢p(T) Ex(t) dr (52)

The net heat flux on the walls is given in Table 4. The 0
net heat flux increases with the increase of the emissivity of goth #»(r) and vy, are independent of the emissivity and
the walls. The error of the predicted heat flux also increasestemperature of the walls. Moreovesi(r) and ¢ are inde-
with the increase of the emissivity of the walls, but it remains pendent of the temperature of the walls, although they are a
lower than 1%. function of the emissivity of the walls.

The predicted temperature fielgl(z) as a function of

Isotropically scattering medium. In this problem, a plane  the distance between the walls is given in Fig. 7 for three
medium with isotropic scattering is studied. The medium different casese,; = 0.8 and g, = 0.1; ¢,,1 = 0.8 and
neither absorbs nor emits. Since the medium is grey, thise,» = 0.5; ¢,,1 = 0.8 ande,» = 1.0. The calculations were
problem is mathematically equivalent to that of an emitting- performed using a uniform grid with 20 control volumes
absorbing and non-scattering medium in radiative equilib- (except forr; = 5.0 where 100 control volumes were em-
rium. The walls may be either grey or black and are main- ployed) and 5x 5 control angle elements per octant. It can
tained at prescribed temperature. This problem has beerbe seen that the gradient of the temperature profile becomes
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Fig. 7. Predicted normalized temperature figddr), as a function of the distance between the wallse(g) = 0.8, 2 = 0.1; (b) £,,1 = 0.8, &yy2 = 0.5;
(c) g1 =0.8,&,2=1.0.

increasingly smaller as the optical thickness of the medium 1.0
decreases. In the limit of a transparent medium, the temper- 0.8 _ x x X %7 7, =01
ature of the medium would be constant afyo= 0.5, while ' T, =0.5]
in the limit of r; — oo, the non-dimensional temperature 1 o O == i
would decrease from 1.0at=0to O atx = L. Q 0.6 1 2 A

The accuracy of the predictions is examined in Figs. 8 > 1 a T, =1
and 9, which showy;, and v for the three combinations 0.4 1 T =
of wall emissivities mentioned above, as a function of the ] "0 o0 o/ - P
optical thickness of the medium and angular discretization. 0.2 1 ¥
A uniform grid with 20 control volumes was used. The hor- 7
izontal lines show the exact fluxes. Apart from = 5.0, 00+
refinement of the angular discretization improves the solu- 0 2 4 6 8 10
tion accuracy, i.e., the predicted heat flux converges to the N, =N,

exact one. However, if;, = 5.0 the angular refinement does
not yield more accurate results. This situation is similar t0 Fig. 8. Non-dimensional heat flux for black boundaries as a function of
that observed in the first problem, suggesting that a finer spa-the angular discretization and optical thickness of the medium (solid lines:

tial discretization is needed. exact solution; symbols: predictions).
In fact, Fig. 10 reveals that an accurate solution requires
both fine spatial and angular discretizationsrif = 5.0. Table 5

. . . . A Non-dimensional radiative heat flux for an isotropically scattering medium.
A fine grid along with a coarse angular discretization, or a The results for both the HYDRA and the discrete ordinates method were

C9arse Q”d together with a fine angular d|scrgtlzatlon, do not calculated using a uniform grid with 20 control volumes (exceptrfoe
give satisfactory results. In fact, a coarse grid and a coarses.o where 100 control volumes were employed) andEontrol angle ele-
angular discretization may perform better, owing to the com- ments per octant

pensation between spatial and angular discretization errors,,, fw2 - Exact HYDRA DOM
Both fine spatial and angular discretizations yield the most ;g 10 01 07451 07337 07445
accurate solutions. This behaviour, which has been formerly 05 0.5986 05909 06006
reported for other solution methods [14,21], is independent 1.0 0.4860 04829 04926
of the emissivity of the walls, and occurs for optically thick 50 01975 01959 02026
media. 0.8 05 01 04270 04232 04268
Table 5 shows a comparison between the one-dimensional 05 0.3745 03714 03752
radiative heat flux predicted by the present method and by 10 03271 03257 03300
the discrete ordinates method. The exact solution is also 50 0.1649 01638 01684
given. The same spatial and angular discretizations were em-0.8 01 01 0.0967 00965 00967
ployed for both methods. There is no clear trend regarding gg 8833‘71 ggggg 88383
the most accurate method, although the proposed method =0 00711 00724 00718

appears to be more accurate for strongly scattering media,
and the discrete ordinates method more accurate for weakly
scattering media. The corresponding CPU time fag = 5.0 is 0.68, 9.2 and

In the case of; = 0.1, the CPU time required to obtain  127.7 s, respectively.
the converged solution using a uniform grid with 20 control
volumes, is equal to 0.43, 4.2 and 44.0 s fox 2,5 x 5 Anisotropically scattering medium. In the last problem,
and 10< 10 control angle elements per octant, respectively. the medium scatters anisotropically with a constant scat-
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Fig. 9. Non-dimensional heat flux as a function of the angular discretization and optical thickness of the medium (solid lines: exact solutian; symbol
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Fig. 10. Influence of the spatial and angular discretizations on the predicted non-dimensional heat#f}uxf610 (solid lines: exact solution; symbols:

predictions). (a) Black boundaries; (3)1 = 0.8, ;2 = 1.0.

tering coefficient, but neither absorbs nor emits. A linearly
anisotropic phase function is considered. The medium is in
radiative equilibrium and confined between two black walls
at different temperature,,1 = 0 andT,,>.

The incident heat flux on wall 2, normalized by the differ-
ence between the emissive powers of the walls, is plotted in
Fig. 11 as a function of the optical thickness of the medium
and the coefficienti; of the scattering phase function. The
exact solution is taken from [23]. The incident heat flux in-
creases with the optical thickness of the medium, i.e., with
the scattering coefficient, but decreases if the anisotropy be-
comes more important. The predicted results were obtained
using a uniform grid with 40 control volumes ane 6 con-
trol angle elements per octant. They closely follow the ref-
erence solution [23], demonstrating the applicability of the
present method to anisotropic scattering media.

4. Conclusions

Normalized Incident Heat Flux

0.9

08 1
0.7 -
0.6 -
0.5 -
0.4 -

0.3

0

2

4

6

8 10

Optical Thickness

Fig. 11. Normalized incident heat flux on the hot wall as a function of the
optical thickness of the medium for different linearly anisotropic scattering
phase functions (solid lines: exact solution; symbols: predictions).

grey media. The method assumes that the spatial and angular
A new method for the solution of the radiative transfer dependence can be split and the radiation intensity approxi-
equation has been presented and applied to one-dimensionahated as a linear combination of basis functions, dependent
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only on the angular direction, with coefficients dependent
only on the spatial coordinates. The finite volume method

and the step scheme are used for spatial discretization, and

the finite element method is used to define the basis func-
tions used in the angular discretization. The method was
applied to emitting, absorbing and scattering media. The
influence of the spatial grid, angular discretization, optical

thickness of the medium and emissivity of the walls was

investigated. It was shown that the method works well and
converges to the exact solution of the test problems for suffi-
ciently fine spatial and angular discretizations. In the case of
optically thick media, it was found that the solution accuracy

may be adversely affected by refining either the angular dis-
cretization or the spatial discretization alone. It is necessary
to refine simultaneously the spatial and angular discretiza-
tions to ensure a reduction of the solution error. The method
is still in an initial stage of development, and therefore many

important issues still need to be addressed. These include

the implementation of more accurate spatial discretization
schemes, an optimization of the solver, a more extensive

comparison of the accuracy and computational requirements

of the proposed method with other available methods, and
the extension to complex enclosures and non-grey media.
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